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We describe a numerical technique for solving 2-dimensional compressible multimaterial 
problems using a general topology mesh. Multimaterial problems are characterized by the 
presence of interfaces whose shapes may become arbitrarily complex in the course of dynamic 
evolution. Computational methods based on more conventional fixed-connectivity quad- 
rilateral meshes do not have adequate flexibility to follow convoluted interface shapes and 
frequently fail due to excessive mesh distortion. The present method is based on a mesh of 
arbitrary polygonal cells. Because this mesh is dual to a triangulation, its topology is 
unrestricted and it is able to accommodate arbitrary boundary shapes. Additionally, this mesh 
is able to quickly and smoothly change local mesh resolution, thus economizing on the 
number of mesh cells, and it is able to improve mesh isotropy because in a region of uniform 
mesh the cells tend to become regular hexagons. The underlying algorithms are based on 
those of the CAVEAT code. These consist of an explicit, finite-volume, cell-centered, arbitrary 
Lagrangian-Eulerian (ALE) technique, coupled with the Godunov method, which together 
are readily adaptable to a general topology mesh. Several special techniques have been 
developed for this extension to a more general mesh. They include an interface propagation 
scheme based on Huygens’ construction, a “near-Lagrangian” mesh rezoning algorithm that 
minimizes advection while enhancing mesh regularity, an efficient global remapping algorithm 
that is capable of conservatively transferring quantities from one general mesh to another and 
various mesh restructering algorithms, such as mesh reconnection, smoothing, and point 
addition and deletion. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

Multimaterial problems, which inherently contain interfaces, are best suited to 
Lagrangian methods of computation. This is because Lagrangian methods resolve 
interfaces crisply, in contrast to Eulerian methods, which diffuse or smear them 
out. Unfortunately, Lagrangian methods in multidimensions suffer from “mesh 
tangling,” an extreme form of mesh distortion which limits the time to which a 
purely Lagrangian computation may be taken. This difficulty may be alleviated by 
the use of the arbitrary Lagrangian-Eulerian (ALE) technique [2], which permits 
arbitrary mesh motion. In particular, by requiring only the interface to be 
Lagrangian (in fact, only its normal velocity needs to be Lagrangian), it is possible 
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to retain the sharp definition of the interface, together with a robust, well-defined 
mesh in the interior. This is the principle of the CAVEAT code [l], and it has 
generally proven to be successful. 

However, such a method still may experience difficulty and may even fail because 
of mesh difficulties. This is because most codes (including CAVEAT) utilize a fixed 
topology mesh, defined at the outset, which in general will not be able to adapt to 
the dynamically evolving interface shape, in spite of efforts at regularization. The 
most general solution to this difficulty, while preserving a Lagrangian interface, is 
to relax the constraints on mesh topology. This is the principal idea behind the 
CAVEAT-GT code, the subject of the present paper. 

The CAVEAT-GT code is therefore a general topology extension of the 2- 
dimensional CAVEAT code [ 11. This code solves the transient, multimaterial, 
compressible equations of fluid dynamics. CAVEAT-GT is currently restricted to 
solving the multimaterial compressible Euler equations, neglecting the effects of 
material strength, viscosity, and heat conduction. In most cases it uses the same 
algorithms, including the cell-centered Godunov method, most of which are easily 
adapted to a general topology mesh. In this paper, therefore, we will restrict our- 
selves to a description of those aspects, primarily associated with the general 
topology mesh, in which CAVEAT-GT differs from CAVEAT. 

The CAVEAT-GT computational mesh consists of arbitrary polygonal cells, 
which are the control volumes of a finite-volume method. Closely associated with 
this mesh is a dual triangulation. It is the arbitrary topology of this triangulation 
which permits the great flexibility of the computational mesh. This flexibility allows 
the mesh to adapt itself to arbitrary interface contours and to resolve regions of 
even the highest curvature, if desired. It permits a rapid and smooth change in local 
mesh resolution, which economizes in the total number of cells required for a given 
degree of resolution. Another advantage is the enhancement of mesh isotropy 
because in regions of uniform mesh the computational cells tend to become regular 
hexagons, whose isotropy is higher than that of square or rectangular cells. 

The desirable properties of such a general topology mesh are not without a price. 
In general, the data structure is more complicated and the algorithms are more 
complex. There is very little prior experience to draw from and so the development 
of CAVEAT-GT has been largely experimental. More work is required. 
Nevertheless, the experience has been largely successful and even at its current stage 
of development, as described herein, CAVEAT-GT is capable of solving nontrivial 
problems. 

2. MESH GEOMETRY 

The computational domain modeled by the CAVEAT-GT algorithm is divided 
into nonoverlapping, closed regions. Each region typically is associated with a 
specific material. It may be convenient, however, to divide a single material into a 
number of regions. This gives the ability to follow Lagrangian surfaces within a 
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material. Boundaries along which regions interact are referred to as interfaces. 
Because interfaces are associated with more than one region, mesh vertices along 
interfaces are doubly defined. 

Associated with each region is an underlying triangulation. This triangulation is 
used to define the computational cells and it is useful for describing the mesh 
topology (connectivity) and the associated data structure. The computational cells 
are the control volumes used by the finite-volume formulation of the governing 
equations. Interior computational cells are defined by vertices that are the centroids 
of the associated triangles (Fig. 1). Therefore, there is a cell associated with each tri- 
angle vertex. It is from these nonoverlapping, closed, arbitrary polygonal cells that 
CAVEAT-GT derives its geometrical flexibility. Cells lying adjacent to boundaries 
also are defined by cell vertices interior to a region. Along the boundary, however, 
a point lying halfway between the cell points is used to define the extent of the 
boundary cell. Such points are referred to as boundary points (Fig. 1). Computa- 
tional cells are not necessarily convex. Boundaries and interfaces are constructed 
with linear segments defined by the cell points lying on the boundaries. Boundary 
segments and points that lie on the interfaces separating regions are doubly defined. 

In general, computational quantities are associated with one of three locations on 
a computational cell. Extensive properties (i.e., mass, momentum, and energy), as 
well as the intense properties (i.e., density, velocity, pressure) derived from them, 
are associated with the cell centroids. The computational procedure also requires 
intensive quantities on cell sides. Information on cell sides is necessary to obtain left 
and right states for the Riemann problem required by the Godunov method and for 
remapping. Finally, coordinate positions are associated with cell vertices. The sub- 
scripts k, m, and n are used to denote cell centered, side, and vertex (or triangle) 
quantities, respectively. 

Certain special boundary cell-points are treated differently. They are called “fixed 
points” and they include triple points, special symmetry points, and user-specified 
boundary cell-points. Boundary cell-points located where three regions adjoin are 
referred to as triple points. The intersection of a line of symmetry and a region 
boundary or two lines of symmetry are lixed symmetry points. Finally, kinks or 
corners in the boundary contour which are not to be smoothed may be defined as 
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FIG. 1. Mesh geometry. 
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“fixed points” by the user. The locations of “fixed points” are determined prior to 
and remain fixed during the interface construction. That is, they act as Dirichlet 
boundary conditions for the interface construction algorithms. 

3. METHODOLOGY 

CAVEAT-GT is a 2-dimensional computer program defined for either Cartesian 
(planar) or cylindrical geometry. Time differencing is explicit; consequently, a 
stability limit is imposed on the time-step size (At), based on a local sound speed 
and a minimum characteristic cell dimension. Additional time-step restrictions 
based on accuracy considerations are also used to limit volume changes within a 
cycle or to limit the interface motion. 

CAVEAT-GT uses the arbitrary Lagrangian-Eulerian (ALE) method: a 3-phase 
algorithm to advance the material state one full cycle (Fig. 2). During the 
Lagrangian phase, the material state is advanced by solving the conservation equa- 
tions applied to volumes following the material motion. Boundary and interface 
positions also are updated during this phase. Following the Lagrangian phase, a 
new mesh is generated. This step is the rezoning phase. Finally, in the remapping 
phase, the variables calculated in the Lagrangian step are transferred from the 
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FIG. 2. The CAVEAT-GT computational cycle. 



GENERAL TOPOLOGY GODUNOV METHOD 33 

Lagrangian mesh to the new mesh. CAVEAT-GT contains two rezone/remap algo- 
rithms, namely, a “near-Lagrangian” algorithm and a global algorithm. Because the 
global rezone/remap algorithm is more costly, it is used infrequently and only when 
necessary, such as when the mesh topology changes. The “near-Lagrangian” 
algorithm is used on every cycle. In fact, the global algorithm uses the 
“near-Lagrangian” rezone as its starting point. 

3.1. Lagrangian Phase 

During the Lagrangian phase, the rates of change of volume, mass, momentum, 
and energy are computed assuming that the computational volumes are following 
the material motion. That is, we evaluate the right-hand sides of the Lagrangian 
conservation equations of volume, mass, momentum, and total energy in control 
volume form, which are 

$jvLdV=fsLu*.ndS, 

d 

iii VL s 
p dV=O, 

d 

ii VL 
1 pudV= +p*ndS+f t*.ndS, 

SL 

(1) 

and 

&,,,,= -$sLp*u*.ndS+f u*.r*-nd.S-f q* .ndS. 
SL SL 

An equation of state and constitutive equations for the stress tensor and energy flux 
are required to close this system of equations. The notation VL(I) denotes a 
Lagrangian control volume (i.e., a computational cell), with surface S,(t), moving 
at the local material velocity. The unit normal vector directed outward from the 
surface is n. The operator d/d? is the Lagrangian (material) time derivative. The 
quantities p, e, p, u, E, r, and q are the density, specific internal energy, pressure, 
material velocity, specific total energy (E = e + $I u), deviatoric stress tensor, and 
heat flux, respectively. An asterisk is used to denote a quantity located at a cell face. 
Currently, CAVEAT-GT does not implement the terms involving the stress tensor 
and heat flux. 

CAVEAT-GT is completely cell-centered; variables that specify the material state 
(including momentum) are assumed located at the centroids of the computational 
cells. This makes it feasible to compute material slip without the need to include a 
logical slideline. The accuracy of the method is dependent on the assumed spatial 
variation of a representative intensive quantity 4(x) about the cell centroid x,, i.e., 

d(x) = (b(Xk) + V&. (x - %l;) + O(Llx2). (2) 
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The computational procedure is denoted to be spatially “first-order” if all quantities 
are assumed constant within a computational cell, that is, if 4(x) = #(&). The 
method is denoted to be spatially “second-order” if the gradient (V&) exists, that 
is, if a linear variation for the variable is assumed within a cell. Note that this does 
not necessarily imply the corresponding order of numerical accuracy of the overall 
algorithm. 

Three options are available for computing the cell-centered gradients (V,qS). 
A temporary trial gradient located at the cell vertices (x,) is first computed. Using 
the divergence theorem, this is taken to be the area-averaged gradient: 

(3) 

where A, is the area of the triangle connecting the centroids of the three computa- 
tional cells surrounding the vertex for an interior cell (Fig. 1). For cells lying on 
region boundaries A, is the area of the quadrilateral whose vertices are the cell 
centroids and the boundary points (Fig. 1). The symbols C, and n represent the 
contour and unit outward normal to A,, respectively. Values of 4 are assumed 
located at the cell centroids ($(&)) in the mesh interior. At the boundary points, 
values of 4 are deduced from the appropriate boundary conditions. A piecewise 
linear variation of 4 along the contour C, is assumed. This is consistent with the 
assumption that d(x) is a linear function. An area weighted average of the vertex 
trial gradients associated with a computational cell then gives a trial gradient at the 
cell centroid (Sk): 

This gradient may be used as one option; however, this destroys monotonicity and 
severe overshoots or undershoots in the vicinity of steep gradients may be 
produced. To preserve monotonicity, the gradients must be limited; 

vkd = ak(Vk4), (5) 

where ak is a limiting coefficient (0 < ak < 1). The use of gradient limiting reduces 
the order of accuracy of the calculation and adds numerical dissipation to the 
algorithm. Two limiting algorithms are used as the remaining two options. A 
multidimensional extension of van Leer’s [l, 3, 111 l-dimensional limiter permits 
the steepest possible gradients but is not always monotone. A less radical but some- 
what more diffusive monotone limiter is also available [ 1, 111. 

Evaluation of the right-hand sides of Eq. (1) requires the pressure (p*) and the 
velocity normal to the control volume surface (w* = u* . n) at the midpoint of each 
cell face. In general, an extrapolation using Eq. (2) produces a discontinuity at the 
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cell face. These discontinuities are resolved by solving an approximate Riemann 
problem [4] at each cell face. This, in effect, is an extension of the original l-dimen- 
sional Godunov method. 

Solutions of the Riemann problem provide normal material velocities, 
w* = (u*. n)n, on the cell sides. These velocities are used not only for the solution 
of the conservation equations, but also to propagate interfaces and boundaries by 
the use of Huygens’ construction. For each interior cell side there is one such 
velocity. However, there are two Riemann velocities associated with the straight 
line segments located along the region boundaries (Fig. 3). These velocities are posi- 
tioned midway between the cell point and the boundary point at the locations a’ 
and fi’. This can be used to define a linear distribution of the normal velocity at 
each boundary segment. Assuming that the magnitude of the normal velocities 
remains constant, Huygens’ construction predicts that the boundary segment will 
remain a straight line during a time step. The two boundary-segment velocities are 
used to construct “wavefronts” with radius w* At, whose envelope is the new 
segment location according to Huygens’ construction. The new boundary-segment 
position is specified by the points a and fi that lie on the tangent to the two circular 
“wavefronts” emanating from the points a’ and fl’. Restrictions are placed on the 
time-step size (At) to prevent the new segment from rotating more that 90”. That 
is, the larger circular front on a segment is prevented from overtaking the smaller 
one in an unphysical fashion. 

Having found the new locations of the boundary segments, the new boundary- 
cell points might be located at the intersections of the segments. This is, in fact, 
what is done for the location of the “fixed points.” There are two difficulties with 
this procedure, however. First, in the case of a triple point, there are potentially 
three different intersection points. This ambiguity is resolved by linearly combining 
the three positions using a density weighting. Second, the intersections are not 
defined when the segments are parallel or collinear. The problem may be easily 
regularized if posed in a variational form. A variational formulation for the inter- 
section of two lines follows from the realization that the intersection point is 
simultaneously the shortest distance from both lines. Therefore, the point of inter- 
section (xk) is determined by minimizing the functional (Fig. 4) 

FIG. 3. Interface propagation by Huygens’ construction. 
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FIG. 4. Boundary-cell point solution. 

where di,k is the square of the distance from the point xk to the line segment m 
given by 

&kc = le,~(xk-~,)x~,12/l~,12~ (7) 

where e, is the unit vector normal to the computational plane, and 6, = fi, - a, is 
the distance between the two points obtained from the Huygens’ construction. All 
the intersection points may be found by taking the variation of the sum of these 
terms over all boundary segments with respect to the free variables. The free 
variables are the coordinates of all boundary points other than the “fixed points.” 
This variational problem also is singular for parallel or collinear boundary 
segments. However, the problem is now regularized easily by including the 
additional term 

z&l= Ixk+I-xk12 (8) 

in the functional. The resulting functional is 

z(xk)=Cwkz,k+&CO,zEm. (9) 
k m 

Again, the variation of this functional provides a system of equations for the 
boundary-point positions. Provided the points are ordered appropriately, the 
system of equations is in tridiagonal form and is solved easily. 

Equation (9) contains two weight functions, which may be used to control point 
distribution, and a scaling factor. The weight function wk is 

wk = sin* CIk, (10) 

where ek is the angle between the two boundary segments (Fig. 4). This choice for 
wk weights the functional z,k less as the boundary segments approach parallelism, 
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and this has been found useful to control the singularity at a single boundary point 
when the local curvature undergoes a change of sign. The second weight function 
is 

0, = Pinl(P:, 47JO? (11) 

where ph = $(p, + pk + ,) is the average density along the segment and d, = 
Ixk - xk ~, 1. The denominator of Eq. (11) contains values at the time of the last 
global remap. With the weight defined by Eq. (1 l), the regularizing term attempts 
to equidistribute a “l-dimensional” mass distribution along parallel or collinear 
boundaries where this term dominates. Therefore, boundary-cell points are spaced 
closer in regions of high density and so the points move in a “near-Lagrangian” 
fashion. 

3.2. Rezone Phase 

The rezoning phase of the CAVEAT-GT algorithm specifies a new mesh. The 
positions of the boundary-cell points are determined first and are then used as 
boundary conditions for the algorithm that determines the positions of the interior 
vertices. 

Two methods of rezoning are used. The “near-Lagrangian” method constructs a 
mesh whose cells have nearly the same mass as the cells of the Lagrangian mesh, 
but with reduced distortion. Because the mesh is nearly Lagrangian this method 
minimizes advection errors, but it is usable only when the mesh topology does not 
change. The global rezone scheme is invoked when new mesh points must be added 
or deleted, or when the interior cells have become sufficiently distorted. The global 
rezone constructs an entirely new mesh based on smoothness criteria. Typically, the 
mesh topology will change. The global rezone is more complex and costly than the 
“near-Lagrangian” rezone, but it is invoked less frequently. 

3.2.1. Boundary rezone. Advancement of the interfaces and boundaries that 
enclose each region is accomplished by the interface construction technique 
(Section 3.1). This construction uses the velocities normal to the boundary segments 
(i.e., the velocities obtained from the Riemann problem) to position the new 
boundary. However, the location of boundary-cell points tangentially along the 
boundary contour is not specified and is arbitrary, provided the boundary is 
sufficiently well resolved. The original interface construction may not distribute 
boundary points in a satisfactory manner. This job is performed by the boundary 
rezone algorithm. 

Again, there are two boundary rezone algorithms. Provided the boundary 
curvature is resolved sufficiently with the existing points, the “near-Lagrangian” 
placement locates boundary points to preserve the original mass distribution along 
the boundary segments. This ensures that the associated advection across cell sides 
that intersect the boundary is minimized. The method used for this purpose is 
analogous to the formulation developed to regularize the interface construction 
technique (Eqs. (8) and (11)). Because the boundary contour is known, the 
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problem is l-dimensional in the arc length (s). Therefore, the boundary-cell points 
are located along the contour at positions given by the arc lengths sk which 
minimize the variational functional 

I=C w,,, A$,, (12) 
m 

where As,,,=s~-s~-~. The weighting function is defined by Eq. (11). This 
boundary rezone typically is followed by a “near-Lagrangian” interior rezone. 

In case the boundary is under-resolved or over-resolved with the existing number 
of points, the general topology mesh allows one to add or delete points without 
unduly influencing the rest of the mesh. The rezoning procedure which both deter- 
mines the required number of points and also locates the points makes use of a 
point distribution function N satisfying the ordinary differential equation 

(13) 

where the right-hand side is a specified point-distribution density function, as 
described below. Equation (13) is integrated along boundary contours between 
“fixed points.” The resulting values for N(s) are scaled to ensure that the final value 
for N(s = L) is an integer. That is, the positions of the “fixed points” are not altered. 
The boundary points then are placed along the boundary contour at positions 
where N(s) has integer values. Solutions for N(s) are obtained every time step. The 
solution is tested to determine if the existing boundary-point distribution 
sufficiently resolves the boundary contour. That is, if boundary-point addition or 
deletion or gross vertex migration is unnecessary, the boundary-point positions 
resulting from the “near-Lagrangian” description are accepted. However, if the 
“near-Lagrangian” positions are not adequate to accurately resolve the boundary 
contour, then the final positions of the boundary points are specified by Eq. (13), 
and this must be followed by a global rezone of the interior mesh. 

The point-distribution density function is defined as 

(14) 

where f. is a normalizing coefhcient, the variable As,,, is a user supplied maximum 
spacing allowed for each region, and elk and LX, are user supplied weight constants. 
The point-distribution density function is chosen to equally distribute boundary 
points along the interfaces in the absence of any distinguishing features. Otherwise, 
boundary points are forced to migrate into regions with large values of the 
boundary curvature (K) or the gradient (Vq5) of a prescribed variable, such as 
pressure. The boundary curvature (rc) is calculated by passing a circle through the 
kth boundary point and its two neighbors. At multiply defined boundary points 
along region interfaces, only the maximum value of the point-distribution density 
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function is retained. Further, before being used in Eq. (13) the distribution function 
(f) is smoothed around the entire region boundary using a convolution with a 
Gaussian of prescribed width. 

3.2.2. Interior rezone. The interior rezone algorithms construct a mesh in the 
interior of each region using the boundary-point positions, obtained from the 
boundary rezone computation, as boundary conditions. Two interior rezoning 
algorithms are used, a “near-Lagrangian” and a global algorithm, corresponding to 
the two boundary rezoning algorithms. Both of the interior-rezone algorithms are 
based on the dual triangulation, rather than on the computational mesh. 

Unfortunately, it is not feasible to obtain sufficiently accurate fluid velocities at 
cell vertices in the interior of the mesh, corresponding to the Riemann normal 
velocities at cell faces. It is therefore not possible to define a purely Lagrangian 
mesh motion and thus avoid remapping or advection errors. Instead, we attempt to 
define mesh velocities that are close to Lagrangian velocities, while at the same time 
attempting to minimize mesh distortions. The “near-Lagrangian” rezone algorithm 
thus attempts to preserve Lagrangian cell volumes and also to maintain a smooth 
mesh. 

We make use of the vector identity 

V*u=VD-Vxw, (14a) 

where D = V . u = l/v dvldt is the divergence, o = V x u is the vorticity, and v is the 
specific Lagrangian volume. Realizing that mesh distortion is associated primarily 
with vorticity, we drop the last term on the right-hand side and define mesh 
velocities (u,) by the equation 

V2u, = VD. (15) 

The mesh velocity field u, obtained from this equation has a divergence equal to 
the divergence of the fluid velocity, and its vorticity satisfies a Laplacian equation, 
making it a smooth function in the region interior. Thus, this formulation preserves 
Lagrangian volumes and smooths out mesh distortions due to vorticity. 

Equation (15) may be expressed in the form 

v2 6x, = V(Sv,/v,). (16) 

This is a linear Poisson equation in which 6x, is the change of the position of the 
cell-center (i.e., triangle vertex) from its position at the start of the time step. The 
displacement 6x, is known on the boundary; hence, we have Dirichlet boundary 
conditions. The discretization on the triangulation is accomplished using a finite 
element formulation. That is, the functional 

I= j- [[IV 6~~11’ +26x, .V(Gv,/v,)] dA (17) R 
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is minimized with respect to 6x,. Linear elements are used. Two uncoupled matrix 
equations are obtained for 6x, and 6y,, respectively. The matrices for the two 
systems of equations are identical, and they are symmetric and positive-definite. We 
find that a diagonally scaled conjugate gradient method is an efficient way to solve 
these equations. Once the new triangle vertex positions have been determined, the 
cell vertices are obtained using linear interpolation. 

In spite of its tendency to smooth the mesh, the “near-Lagrangian” rezone still 
may produce an unacceptable mesh (typically, only after a number of time steps). 
Further, because the “near-Lagrangian” rezone assumes no change in mesh 
topology it cannot be used when mesh topology is changed by adding or deleting 
points. In these circumstances a global-rezone method is employed to redefine and 
produce a smooth mesh. No attempt is made to retain the existing mesh, except for 
the boundary or interface shape as defined by the boundary rezone. The object is 
to produce a smooth mesh by all means available, including mesh topology 
changes. A global rezone is invoked if solutions to Eq. (17) produce triangles with 
negative areas, if an interior triangle contains an angle less than lo”, when a 
decision is made to add or delete mesh points, or when there is gross boundary 
point migration. 

In a manner similar to established rezoning techniques [S], a variational 
formulation using a composite functional defined so as to produce desirable mesh 
characteristics is used. The functional incorporated into the CAVEAT-GT method 
is 

z=z,+crz,, (18) 

where Ze and la are separate measures of mesh distortion. The relative weight (a) 
is used primarily as a scaling coefficient. 

The functional I0 is defined as 

1, = 1 (d:, + d:, + d:,),l4v 
n 

(19) 

The sum is over triangles. The area of the triangle is A, and d, is the length of the 
side of the triangle. It may be shown that each term in Eq. (19) is equal to the sum 
of the cotangents of the interior angles of a triangle, and so I0 is a measure of the 
departure of the triangle angles from 60” and therefore promotes the formation of 
equilateral triangles. However, since the functional is not sensitive to triangle areas 
it is found that triangle areas do not vary smoothly over the mesh. In an attempt 
to alleviate this difficulty, the additional functional Id is introduced, 

where the sum is taken over all triangle sides and d,,, is the length of each side. The 
functional la is minimized when the lengths of all triangle sides are equal, and there- 
fore it provides the necessary sensitivity to triangle size. 
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The complete functional (Eq. (18)) is minimized with respect to xk, that is, with 
respect to all triangle vertex coordinates except those on the boundaries. The mesh 
obtained from the “near-Lagrangian” interior rezone is used as the initial estimate 
for the global rezone. The resulting variational problem provides a coupled system 
of nonlinear equations for the coordinates xk and Yk in each region. An iterative 
scheme is used to solve these equations during which changes in the connectivity of 
the mesh take place. That is, as the cell points are moved during the iteration, the 
angles not associated with the diagonal of every quadrilateral formed by two 
neighboring triangles are checked to ensure their sum is less than 180” (cf., angles 
O3 and 9, in Fig. 5). If the sum is greater than 180”, then the diagonal is switched. 
This reconnection tends to produce a Delaunay triangulation [6], the dual of the 
Voronoi mesh [7]. The change of topology allows the mesh extra degrees of 
freedom in order to relax to a smoother configuration. Since the method is non- 
linear, mesh changes must be limited and, further, equation coefficients must be 
periodically recomputed, particularly if the topology changes. 

3.3. Remapping Phase 

Although the motion in the direction normal to the region boundaries is 
Lagrangian, the mesh motion tangent to the boundaries and in the interior differs 
from the material motion. Consequently, it is necessary to remap (or transfer) the 
results of the Lagrangian phase onto the mesh produced by the rezoning algo- 
rithms. The quantities transferred are the fundamental conserved quantities such as 
mass, momentum, and total energy. Therefore, any method used should preserve 
conservation. If the relative displacement of the Lagrangian and the rezoned meshes 
is sufficiently small (so as not to violate the stability of the numerical technique) 
then the remapping of the variables may be expressed in terms of fluxes across cell 
faces. This process is referred to as advection [ 111. Advection, therefore, is 
appropriate when remapping to the mesh generated by the “near-Lagrangian” 
rezoning technique. However, a different remapping method must be used to trans- 
fer variables to the mesh created by the global rezoning scheme. Both remapping 
methods introduce a diffusion error. This error is reduced by increasing the order 

FIG. 5. Mesh restructuring. 
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of accuracy of the approach or by reducing the relative difference between the 
material and mesh velocities. 

The expression for the rate of change of the integral of a representative intensive 
quantity ~4, where 4 may represent unity, velocity, or specific total energy, as a 
result of advection is 

(21) 

where u and u, are the material and mesh velocities, respectively. The integrals refer 
to a computational cell with volume V whose surface and unit outward normal are 
S and n, respectively. This equation is discretized in a straightforward fashion 
comparable to the method used in [ 11. 

The global remap contained in CAVEAT-GT is an extension of previously 
developed methods for quadrilaterals [S-l 1 ] to the geometry of a general topology 
mesh. The object is to obtain a conservative transfer of conserved variables between 
two arbitrary meshes. There is no restriction on either the mesh topology or the 
time-step size. Because the variables are remapped from the “near-Lagrangian” 
positions to the new mesh, a global rezone/remap always is preceded by a “near- 
Lagrangian” rezone and advection. 

In this type of remapping the cell-valued extensive quantity @t on the new mesh, 
such as cell mass, momentum, or total energy, is obtained from the integral 

@k*=s #(x)dK 
Vk’ (22) 

where 4(x) is the known distribution of the corresponding conserved quantity (i.e., 
p, pu, or PE) on the old mesh, and I’,* is the volume of the kth cell of the new mesh. 
The problem, then, is to compute volume integrals in the presence of arbitrary 
overlapping of cells of the two meshes. The solution is facilitated by converting 
Eq. (22) into surface integrals using the divergence theorem 

(23) 

where we have introduced a vector flux function 

V . F = d(x). (24) 

The quantity d(x) is assumed to have at most a linear distribution within each cell 
of the old mesh (Eq. (2)), and the flux function is found locally in each cell. The 
integral of Eq. (23) is evaluated by tracing over the cell sides of the new mesh. 
However, the component of the flux function directed normally to the cell sides 
(F, = F . n) is, in general, not continuous across cell edges. Consequently, the sur- 
face integral must include the cell sides of the old mesh in order to subtract 
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effectiveness of this scheme for quadrilateral meshes is the ability to trace the entire 
mesh uniquely by continuous paths along cell edges. This eliminates the need to 
search for the location of the points of one mesh within the cells of the other. It is 
rather remarkable (because it is not obvious at first sight) that it is possible to 
identify corresponding unique paths in an arbitrary triangulation, such as used in 
CAVEAT-GT, thus retaining essentially all the effectiveness of the method in a 
quadrilateral mesh. 

4. EXAMPLE PROBLEMS 

Two relatively simple test problems are presented to illustrate some of the 
features and capabilities of the general topology formulation of CAVEAT-GT. The 
first problem, a blast wave, illustrates the general isotropy of the mesh and the 
properties of the global remapping and rezoning algorithms. The second problem, 
an impact problem, although not really a multimaterial problem, contains an inter- 
face (a free surface) and therefore illustrates the methods of interface propagation 
and boundary rezoning. Both problems are posed in dimensionless form in planar 
geometry. 

4.1. Blast Wave 

The blast wave problem is defined on the initial mesh shown in Fig. 6. The 
problem domain is a 2 x 2 square, occupied by a gamma-law gas (y = :), with an 
“obstacle” located in the lower left corner. The mesh is relatively coarse, containing 

FIG. 6. Initial mesh geometry for the blast wave problem. 
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FIG. I. Mesh geometry preceding and following a global rezone: (a) cycle 170; (b) cycle 171. 
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FIG. 8. Pressure contours preceding and following a global remap for a “first-order” calculation: 
(a) cycle 170; (b) cycle 171. 
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FIG. 9. Pressure contours for the blast wave problem using a “first-order” calculation: (a) C = 0.5; 
(b) t = 1.0; (c) t = 2.0; (d) t = 2.5. 
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FIG. 9-Continued 



48 DUKOWICZ, CLINE, AND ADDESSIO 

r- 
0 .o I .o 

X 

0 

FIG. 10. Pressure contours for the blast wave problem using a “second-order,” van Leer limited 
calculation: (a) c = 0.5; (b) t = 1.0; (c) t = 2.0; (d) I = 2.5. 
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FIG. 11. Evolution of the general-topology mesh for the impact problem using a “second-order,” 
van Leer calculation: (a) initial mesh; (b) t = 2.5; (c) [ = 5.0; (d) t = 7.5. 
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FIG. 1 I-Cunfinued 
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FIG. 12. Evolution of the fixed-connectivity mesh for the impact problem using a “second-order,” 

van Leer limited calculation: (a) initial mesh; (b) t = 2.5; (c) I = 5.0; (d) t = 7.5. 
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FIG. 1 Z-Continued 
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b 

FIG. 13. Pressure contours of the general-topology method for the impact problem using a 
“lirst-order” calculation: (a) I = 2.5; (b) t = 5.0; (c) t = 7.5. 
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593 computational cells, with a characteristic cell dimension of approximately 0.08. 
Initially, the fluid is uniform and quiescent with density and specific internal energy 
of 1 and 1.5 x lOpi0 (dimensionless units), respectively. At t = 0, a source of energy 
is applied to the cell located at approximately x = y = 0.95. This computational cell 
instantaneously acquires an internal energy of 10. 

As the calculation evolves, a cylindrical shock wave emanates from the energy 
source. The “near-Lagrangian” rezone algorithm concentrates cells in the vicinity of 
the wave, as would be the case in a Lagrangian calculation. As cells are compressed 
in the neighborhood of the wave, distorted triangles are generated. When this 
occurs, a global rezone is performed and a more regular mesh is generated. Mesh 
geometries preceding and following a global rezone are shown in Fig. 7. It is obser- 
ved that although a smoother mesh is produced, a hint of the original mesh 
remains. Pressure profiles preceding and following the global remap are shown in 
Fig. 8 for a “first-order” calculation. The diffusion produced by the remapping is 
evident. 

The evolution of the pressure profiles for “first-order” and “second-order” 
van Leer limited calculations is shown in Figs. 9 and 10, respectively. The increased 
amount of diffusion produced in the “first-order” calculation may be observed, 
particularly at early times. For the complete calculation, the “first-order” and 
“second-order” calculations invoke the global rezone/remap procedures 38 and 130 
times, respectively. Diffusional errors are introduced each time a global remap is 
used. Consequently, the advantages of a “second-order” calculation are less evident 
at later times. It may be observed that the wave is not propagated preferentially in 
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FIG. 14. Pressure contours of the general-topology method for the impact problem using a “second- 
order,” van Leer limited calculation: (a) t = 2.5; (b) I = 5.0; (c) I = 7.5. 
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FIG. 16Continued 

any one direction on the internal mesh. This demonstrates the improved isotropy 
anticipated for this method, as compared to the related CAVEAT code [ 11, based 
on a quadrilateral mesh, which typically shows differences in shock propagation in 
directions which are skew to the mesh directions. 

4.2. Impact Problem 

We consider a plate with dimensions 0.4 by 2.0, a density of 8.9, and traveling 
at the uniform velocity of -0.196 in the vertical (downward) direction. At t = 0 the 
plate encounters a rigid wall. The phenomena that one observes are that a shock 
wave propagates vertically from the point of impact and is then overtaken by a 
rarefaction wave as the plate “splatters” against the rigid wall. For comparison, this 
impact problem is computed using both the general topology method (CAVEAT- 
GT) and a fixed-connectivity, quadrilateral mesh (CAVEAT Cl]). The intitial 
general-topology and fixed-connectivity meshes are shown in Figs. lla and 12a. 
Both meshes use computational cells with a characteristic dimension of 0.1. The left 
and bottom boundaries are symmetry boundaries. The right boundary is a free sur- 
face (p = 0), while the top boundary is a specified velocity boundary (u = - 0.196). 
The material obeys the Chaplygin equation-of-state, 

(25) 

where k = 3.49 and p. = 8.9. The initial velocity corresponds to a Mach number of 
0.5, based on the undisturbed sound speed. 
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FIG. 15. Solution for the steady-state impact problem using a “first-order,” calculation: (a) initial 
mesh; (b) surface position and mesh; (c) density distribution; (d) velocity distribution along horizontal 
axis. -theory; 0 0 calculation. 
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FIG. 16. Solution for the steady-state impact problem using a “second-order,” van Leer limited 
calculation: (a) surface position and mesh; (b) density distribution; (c) velocity distribution along 
horizontal axis. ---theory; 0 0 calculation. 
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FIG. 16Conrinued 

The evolution of the mesh for a “second-order” van Leer limited calculation 
using the general-topology mesh is shown in Fig. 11. The ability of the technique to 
smoothly add and delete computational cells along the boundaries, as well as in the 
interior, can be observed. For comparison, the evolution of the mesh for the corre- 
sponding “second-order” van Leer limited, fixed-connectivity computation is shown 
in Fig. 12. The fixed-connectivity calculation also utilized a mesh rezoning techni- 
que in an effort to maintain a regular mesh in the interior. The limitations of the 
fixed-connectivity mesh for this type of problem are obvious. One measure of the 
difference in the computations is the magnitude of the time step required. Since 
both calculations are explicit, the time-step size decreases as the characteristic cell 
dimensions decrease, and the computation time correspondingly increases. At 
t = 7.5, the time-step sizes are 2.4 x 1O-2 and 3.8 x 1O-3 for the general-topology 
and fixed-connectivity methods, respectively. 

Some representative pressure contours for the “first-order” and “second-order” 
general-topology calculations are shown in Figs. 13 and 14, respectively. In this 
problem there is a noticeable improvement in using the “second-order” method as 
compared to the “first-order” method. 

This particular impact problem employing a Chaplygin equation of state is 
advantageous because an analytic solution for the steady state is available [12] and 
this allows us to assess the accuracy of the calculations. To simulate steady state 
conditions, the calculation for a plate with a width-to-height ratio of 0.5 : 7.5 
(Fig. 15a) is taken to late times. We modify the problem slightly from the earlier 
one so that, initially, the plate is in uniform motion with velocity equal to - 1 and 
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density equal to 1. The initial mesh is composed of 512 computational cells with a 
characteristic dimension of 0.1. Again, the Chaplygin equation-of-state (Eq. (25)) is 
used with k = 3.49 and p,, = 1 .O. 

Results for a late time “first-order” and “second-order” van Leer limited calcula- 
tion are shown in Figs. 15 and 16, respectively. The figures show comparisons of the 
computed and exact free-surface profiles, as well as the density and velocity dis- 
tributions on the impact line (i.e., the x-axis). The free-surface position from the 
“second-order” calculation compares extremely well with the exact free-surface 
position. Both “first-order” and “second-order” density and velocity comparisons 
are excellent near the origin. The “second-order” calculation is much more accurate 
as is evident further out from the origin along the line of impact. 

5. SUMMARY AND CONCLUSIONS 

Many fluid dynamics or material deformation problems, particularly those 
involving interfaces, are severely constrained by the use of a fixed topology mesh, 
We have successfully adapted an existing 2-dimensional method [l], based on a 
fixed topology quadrilateral mesh, to the use of a general topology, arbitrary 
polygonal cell mesh. Several features of the original method helped in this adapta- 
tion These features, which were retained in the new code, include the use of a finite- 
volume, cell-centered ALE method and the use of the Godunov method in the 
Lagrangian phase. Several new techniques were developed. These include 

(a) the use of Huygens’ construction for interface propagation, 
(b) several techniques for regularizing, distributing, and smoothing mesh 

points along interfaces and boundaries, 

(c) a “near-Lagrangian” rezoning method which minimizes diffusion due to 
advection by finding a mesh close to but more regular than the Lagrangian mesh, 

(d) a variational method for finding a general smooth mesh within arbitrary 
boundaries, 

(e) an adaptation of the general remapping algorithm [S-11] to a general 
topology mesh, and 

(f) specialized graphics essential for developing and debugging a code using 
the complex data structure associated with a general topology mesh. 

This development effort was largely experimental, intended to produce 
experimence with such a mesh and to evaluate its usefulness. It is clear that such 
a code can handle problems not feasible with a conventional Lagrangian or ALE 
code. In its current state of development, CAVEAT-GT already can handle non- 
trivial problems. No effort was made to optimize the code for speed and efficiency. 
It is to be expected that such a code will not be able to compete with conventional 
codes in this regard because of its additional complexity. Since the code is not 
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optimized, we do not have an estimate of the penalty involved. (This is a penalty 
in terms of time/cell/cycle. The code may well execute faster because of improved 
time step due to a better mesh.) Such a code, therefore, may not supplant existing 
codes, but it may be expected to supplement them for those problems in which its 
capability is unique. 
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